Location: Home > Process Chart > Investment casting

Investment casting

Show

or investment casting in art, see Lost-wax casting.

Inlet-outlet cover of a valve for a nuclear power station produced using investment casting

Investment casting is an industrial process based on and also called lost-wax casting, one of the oldest known metal-forming techniques. [ 1 ] From 5,000 years ago, when beeswax formed the pattern, to today’s high-technology waxes, refractory materials and specialist alloys, the castings allow the production of components with accuracy, repeatability, versatility and integrity in a variety of metals and high-performance alloys. Lost-foam casting is a modern form of investment casting that eliminates certain steps in the process.

There are a variety of materials that can be used for the investment casting process, including stainless steel alloys, brass, aluminum, and carbon steel. The material is poured into a ceramic cavity designed to create an exact duplicate of the desired part. Investment casting can reduce the need for secondary machining by providing castings to shape. [ 2 ]

Investment casting derives its name from the pattern being invested (surrounded) with a refractory material. The fragile wax patterns must withstand forces encountered during the mold making. Much of the wax used in investment casting can be reclaimed and reused. [ 3 ]

The process is generally used for small castings, but has been used to produce complete aircraft door frames, steel castings of up to 300 kg (660 lbs) and aluminium castings of up to 30 kg (66 lbs). It is generally more expensive per unit than die casting or sand casting, but has lower equipment costs. It can produce complicated shapes that would be difficult or impossible with die casting, yet like that process, it requires little surface finishing and only minor machining.

Contents

Process

 
A wax pattern used to create a jet engine turbine blade

Casts can be made of the wax model itself, the direct method; or of a wax copy of a model that need not be of wax, the indirect method. The following steps are for the indirect process which can take two days to one week to complete.

  1. Produce a master pattern: An artist or mould-maker creates an original pattern from wax, clay, wood, plastic, steel, or another material. [ 4 ]
  2. Mouldmaking: A mould, known as the master die, is made of the master pattern. The master pattern may be made from a low-melting-point metal, steel, or wood. If a steel pattern was created then a low-melting-point metal may be cast directly from the master pattern. Rubber moulds can also be cast directly from the master pattern. The first step may also be skipped if the master die is machined directly into steel. [ 4 ]
  3. Produce the wax patterns: Although called a wax pattern, pattern materials also include plastic and frozen mercury. [ 4 ] Wax patterns may be produced in one of two ways. In one process the wax is poured into the mold and swished around until an even coating, usually about 3 mm (0.12 in) thick, covers the inner surface of the mould. This is repeated until the desired thickness is reached. Another method is filling the entire mould with molten wax, and let it cool, until a desired thickness has set on the surface of the mould. After this the rest of the wax is poured out again, the mould is turned upside down and the wax layer is left to cool and harden. With this method it is more difficult to control the overall thickness of the wax layer.[ citation needed ]
    If a core is required, there are two options: soluble wax or ceramic. Soluble wax cores are designed to melt out of the investment coating with the rest of the wax pattern, whereas ceramic cores remain part of the wax pattern and are removed after the workpiece is cast. [ 4 ]
  4. Assemble the wax patterns: The wax pattern is then removed from the mould. Depending on the application multiple wax patterns may be created so that they can all be cast at once. In other applications, multiple different wax patterns may be created and then assembled into one complex pattern. In the first case the multiple patterns are attached to a wax sprue, with the result known as a pattern cluster, or tree; as many as several hundred patterns may be assembled into a tree. [ 5 ] Foundries often use registration marks to indicate exactly where they go.[ citation needed ] The wax patterns are attached to the sprue or each other by means of a heated metal tool. [ 4 ] The wax pattern may also be chased, which means the parting line or flashing are rubbed out using the heated metal tool. Finally it is dressed, which means any other imperfections are addressed so that the wax now looks like the finished piece. [ 6 ]
  5. Investment: The ceramic mould, known as the investment, is produced by three repeating steps: coating, stuccoing, and hardening. The first step involves dipping the cluster into a slurry of fine refractory material and then letting any excess drain off, so a uniform surface is produced. This fine material is used first to give a smooth surface finish and reproduce fine details. In the second step, the cluster is stuccoed with a coarse ceramic particle, by dipping it into a fluidised bed, placing it in a rainfall-sander, or by applying by hand. Finally, the coating is allowed to harden. These steps are repeated until the investment is the required thickness, which is usually 5 to 15 mm (0.2 to 0.6 in). Note that the first coatings are known as prime coats. An alternative to multiple dips is to place the cluster upside-down in a flask and then liquid investment material is poured into the flask. The flask is then vibrated to allow entrapped air to escape and help the investment material fill in all of the details. [ 4 ] [ 7 ]
    Common refractory materials used to create the investments are: silica, zircon, various aluminium silicates, and alumina. Silica is usually used in the fused silica form, but sometimes quartz is used because it is less expensive. Aluminium silicates are a mixture of alumina and silica, where commonly used mixtures have an alumina content from 42 to 72%; at 72% alumina the compound is known as mullite. During the primary coat(s), zircon-based refractories are commonly used, because zirconium is less likely to react with the molten metal. [ 7 ] Prior to silica, a mixture of plaster and ground up old molds (chamotte) was used. [ 8 ]
    The binders used to hold the refractory material in place include: ethyl silicate (alcohol-based and chemically set), colloidal silica (water-based, also known as silica sol, set by drying), sodium silicate, and a hybrid of these controlled for pH and viscosity.
  6. Dewax: The investment is then allowed to completely dry, which can take 16 to 48 hours. Drying can be enhanced by applying a vacuum or minimizing the environmental humidity. It is then turned upside-down and placed in a furnace or autoclave to melt out and/or vaporize the wax. Most shell failures occur at this point because the waxes used have a thermal expansion coefficient that is much greater than the investment material surrounding it, so as the wax is heated it expands and induces great stresses. In order to minimize these stresses the wax is heated as rapidly as possible so that the surface of the wax can melt into the surface of the investment or run out of the mold, which makes room for the rest of the wax to expand. In certain situations holes may be drilled into the mold beforehand to help reduce these stresses. Any wax that runs out of the mold is usually recovered and reused. [ 9 ]
  7. Burnout & preheating: The mold is then subjected to a burnout, which heats the mold between 870 °C and 1095 °C to remove any moisture and residual wax, and to sinter the mold. Sometimes this heating is also used as the preheat, but other times the mold is allowed to cool so that it can be tested. If any cracks are found they can be repaired with ceramic slurry or special cements. [ 9 ] The mold is preheated to allow the metal to stay liquid longer to fill any details and to increase dimensional accuracy, because the mold and casting cool together. [ 10 ]
  8. Pouring: The investment mold is then placed cup-upwards into a tub filled with sand. The metal may be gravity poured, but if there are thin sections in the mold it may be filled by applying positive air pressure, vacuum cast, tilt cast, pressure assisted pouring, or centrifugal cast. [ 10 ]
  9. Divesting: The shell is hammered, media blasted, vibrated, waterjeted, or chemically dissolved (sometimes with liquid nitrogen) to release the casting. The sprue is cut off and recycled. The casting may then be cleaned up to remove signs of the casting process, usually by grinding. [ 10 ]
Hits:  UpdateTime:2015-12-04 09:34:19  【Printing】  【Close
  • BEIJING JINMEI ENTREPRENEUR CO .,LTD
  • Tel: 86-10-8890 9291/8890 9293 Fax: 86-10-8890 9288 Email: info@djm-bj.com
  • Floor No.2, South Building, Block D, Gucheng Base, No.19 Gucheng West Street, ShiJingShan District,, Beijing, China.100043
  • Copyright 2006-2018 DJM All Right Reservered. Report To Improve Product
    京ICP备11022145号-2 & 京公网安备110107000026
  • Jaw plate, Crusher cone, Crusher spare part, blow bar,High Mn Steel castings, High Cr cast iron, ceramic composite casting, metal matrix ceramic composite castings
Powered by  MetInfo  3.0 ©2008-2018  www.MetInfo.cn